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Abstract. In this paper a novel approach to fuzzy support vector ma-
chines (SVM) in multi-class classification problems is presented. The
proposed algorithm has the property to benefit from fuzzy labeled data
in the training phase and can determine fuzzy memberships for input
data. The algorithm can be considered as an extension of the traditional
multi-class SVM for crisp labeled data, and it also extents the fuzzy
SVM approach for fuzzy labeled training data in the two-class classifica-
tion setting. Its behavior is demonstrated on three benchmark data sets,
the achieved results motivate the inclusion of fuzzy labeled data into the
training set for various tasks in pattern recognition and machine learn-
ing, such as the design of aggregation rules in multiple classifier systems,
or in partially supervised learning.

1 Introduction

In real-world applications such as medical diagnosis or affective computing in
an human-computer interaction scenario, the ground truth of the collected data
is not always clearly defined, and even human experts have their difficulties to
find a correct and unique class label, thus, labeling the collected data in such
scenarios is not only expensive and time consuming [4], actually, in some cases
it might be impossible to assign a unique label [10]. For instance, when asking
a group of medical doctors one by one to categorize the status of a patient,
these experts may disagree on the correct class label. Leaving out all such data
when designing a training set may lead to small training sets and to classifiers of
limited performance. One possible approach to avoid this, is to include all data
into the training set, and to express the uncertainty of the class information in
terms of fuzzy labels, so that a training set may be given by

S =
{
(xi,yi) | xi ∈ R

d, yi ∈ ΔL, i = 1, . . . ,m
}

where L is the number of classes and ΔL = {y ∈ [0, 1]L |
∑L

j=1 yj = 1} is the set

of possible fuzzy memberships. Components of yi ∈ ΔL are interpreted as class
memberships to the L classes. In this paper the aim is to demonstrate how fuzzy
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memberships can be incorporated into the overall learning process of support
vector machines in multi-class classification.

The paper is organized in the following way: In Section 2 we review the stan-
dard SVM approach for binary classification (in Section 2.1) and the multi-class
classification SVM (in Section 2.3). In Section 2.2) we report our previous work
on two-class fuzzy-input fuzzy-output SVM (F 2SVM) (see [12]), and in Section
2.4 the F 2SVM approach is extended to the multi-class classification setting.
In Section 3 we present a statistical evaluation of fuzzy SVM on three data sets
(two artificial and one from optical character recognition), finally we conclude
in Section 4.

2 SVM Learning with Fuzzy Labels

2.1 Review on Binary SVM Classification

Basic principles of SVM classification will be introduced before we consider fuzzy
SVM. Binary classification with crisp labels is the starting point for further
investigations on learning from fuzzy labeled data sets. In the crisp classification
framework, any given observation x ∈ X is associated with a corresponding
target label y ∈ Y . It is assumed that X is a compact subset of a real-valued
vector space (i.e., X ⊆ R

d), and that Y = {y1, . . . , yL} is the set of L class
labels. The training set is given by

S = {(xi,yi) |xi ∈ X,yi ∈ Y, i = 1, . . . ,m}

In case of binary SVM classification we have yi ∈ {−1, 1}. An introduction to
SVM may be found in [13] or [1]. A generalized linear discriminant function with
a fixed nonlinear transformation Φ : X �→ X ′

f(x) = sgn
(
wTΦ(x) + w0

)
(1)

classifies all data points correctly if the following conditions are satisfied

yi(w
TΦ(xi) + w0) ≥ 1 i = 1, . . . ,m. (2)

Here w is a weight vector in X ′ and w0 ∈ R is a bias parameter. The distance of
the transformed data points Φ(xi) to the separating hyperplane Hw,w0 := {x ∈
X |wTΦ(x)+w0 = 0} is given by 1/‖w‖2. In order to maximize this distance that
is the margin between the data points and the separating hyperplane, we seek for
a solution that is minimizing the cost function ϕ(w) := ‖w‖22/2 = wTw/2 under
the constraints given in Eq. (2). The original SVM the optimization problem is
then formulated as primal form:

LP (w, w0, α) =
wTw

2
−

m∑
i=1

αi(yi(w
TΦ(xi) + w0)− 1) (3)
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with Lagrange multipliers αi ≥ 0, i = 1, . . . ,m. Differentiating LP with respect
to w and w0 leads to the conditions w =

∑m
i=1 αiyiΦ(xi) and

∑m
i=1 αiyi = 0,

respectively. Substituting these conditions in Equation (3) leads to the dual form

LD(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjΦ(xi)
TΦ(xj) (4)

which must be maximized with respect to the constraints αi ≥ 0, i = 1, . . . ,m
and
∑m

i=1 αiyi = 0.
Once the multipliers αi ≥ 0 have been computed, the weight vector is given

by

w =
∑
i∈SV

αiyiΦ(xi), (5)

were SV is the set of indices of data points with αj 	= 0, the support vectors. From
the Karush-Kuhn-Tucker conditions αj(yj(w

TΦ(xj)+w0)−1) = 0, i = 1, . . . ,m,
the value w0 can be determined by averaging over all support vector equations,
with αj > 0: ∑

j∈SV
yj(w

TΦ(xj) + w0) = |SV| =: nSV (6)

and therefore

w0 =
1

nSV

⎛
⎝∑

j∈SV
yj −
∑
j∈SV

∑
i∈SV

αiyiΦ(xi)
TΦ(xj)

⎞
⎠ . (7)

The discriminant function is then determined by substituting Eqs. (5) and (7)
into the discriminant function (1).

Since the separations constraints in Eq. (2) can not be fulfilled in realistic
data sets they can be relaxed by introducing slack-variables ξi, i = 1, . . . ,m:

wTΦ(xi) + w0 ≥ 1− ξi for yi = 1

wTΦ(xi) + w0 ≤ −1 + ξi for yi = −1 (8)

ξi ≥ 0 i = 1, . . . ,m.

These soft-constraints are incorporated into the cost function ϕ(w) by adding
C
∑m

i=1 ξi, with a positive regularization parameter C > 0,

ϕ(w, ξ) :=
wTw

2
+ C

m∑
i=1

(ξ+i + ξ−i ). (9)

The primal form is defined through

LP (w, w0, ξ, α, r) =
wTw

2
+C

m∑
i=1

ξi−
m∑
i=1

αi(yi(w
TΦ(xi)+w0)−1+ξi)−

m∑
i=1

riξi

(10)
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here ri ≥ 0 and αi ≥ 0 are the Lagrange multipliers. Differentiating LP (w, w0, ξ,
α, r) with respect to w and w0 leads again to w =

∑m
i=1 αiyiΦ(xi) and

∑m
i=1

αiyi = 0, differentiating with respect to ξi gives the equations C − αi − ri = 0,
i = 1, . . . ,m. Substituting them into Eq. (10) yields the dual form:

LD(α, r) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjΦ(xi)
TΦ(xj) (11)

with constraints C ≥ αi ≥ 0, i = 1, . . . ,m and
∑m

i=1 αiyi = 0. Here the upper
bound C ≥ αi derived from the equations C − αi − ri = 0.

The bias term w0 can be computed as in Eq. (7) by averaging over all support
vector equations satisfying 0 < αj < C.

At this point it should be mentioned that the optimization of (11) as well as
the discriminating function relies only on dot products Φ(xi)

TΦ(xj) which can
be replaced in many cases by a kernel function K(xi,xj) = Φ(xi)

TΦ(xj). This
so-called kernel-trick makes the use of SVM very appealing.

2.2 Fuzzy SVM for the Two Class Classification Problem

In the fuzzy-input fuzzy-output Support Vector Machine fuzzy class member-
ships of the training data are used during training, and a fuzzy output is gener-
ated by using a logistic function [9,8,12]. For instance, in a two class classification
problem, the class memberships y+i and y−i := (1 − y+i ) for a data point xi are
incorporated in the SVM training in the following way.

ϕ(w, ξ) :=
wTw

2
+ C

m∑
i=1

(ξ+i y+i + ξ−i y−i ) (12)

using slack variables ξ−i , ξ+i and constraints

wTΦ(xi) + w0 ≥ 1− ξ+i i = 1, . . . ,m

wTΦ(xi) + w0 ≤ −1 + ξ−i i = 1, . . . ,m (13)

ξ−i ≥ 0, ξ+i ≥ 0 i = 1, . . . ,m

as in Eq.(8). This yields the primal form

LP (w, w0, ξ, α, r) =
wTw

2
+ C

m∑
i=1

(ξ+i y+i + ξ−i y−i )

−
m∑
i=1

α+
i (w

TΦ(xi) + w0 − 1 + ξ+i )−
m∑
i=1

r+i ξ
+
i

+

m∑
i=1

α−
i (w

TΦ(xi) + w0 + 1− ξ−i )−
m∑
i=1

r−i ξ
−
i (14)
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Differentiation of LP (w, w0, ξ, α, r) with respect to w and w0 yields

w =

m∑
i=1

(α+
i − α−

i )Φ(xi) and

m∑
i=1

(α+
i − α−

i ) = 0,

and differentiation with respect to ξ+ and ξ− gives Cy+i − r+i − α+
i = 0 and

Cy−i − r−i − α−
i = 0 for i = 1, . . . ,m. Thus the dual form is given by

LD(α) =

m∑
i=1

α+
i +

m∑
i=1

α−
i − 1

2

m∑
i=1

m∑
j=1

(α+
i − α−

i ) (α
+
j − α−

j )Φ(xi)
TΦ(xj) (15)

subject to

m∑
i=1

(α+
i − α−

i ) = 0, and 0 ≤ α+
i ≤ Cy+i , 0 ≤ α−

i ≤ Cy−i , i = 1, . . . ,m.

The fuzzy SVM approach given in Eq. (12), (14), and (15) reduces to the crisp
SVM Eq. (9), (10), and (11), in case of crisp labeled data.

2.3 Multi-class SVM for Crisp Labeled Data

The support vector optimization approach has been applied to the multi-class
classification scenario, see for example [13,5,6,2]. In the case of L classes one is
considering discriminant functions

fl(x) = sgn
(
wT

l Φ(x) + w0l

)
l = 1, . . . , L (16)

with the aim to compute wT
l and w0l for l = 1, . . . , L such that by using the

argmax-decision rule the training data is separated without error. The argmax-
decision rule says that a data point x is assigned to class ω if ω = argmaxlfl(x).
Such a solution satisfies the crisp separation conditions

wT
k Φ(xi) + w0k − (wT

l Φ(xi) + w0l) ≥ 1 (17)

for all data points xi where data point xi is from class k (denoted by xi ∈ Ck),
and for all classes l ∈ {1, . . . , L} with l 	= k. The maximal margin solution is
then computed by minimizing the cost function

ϕ(w1, . . . ,wL) =
1

2

L∑
k=1

wT
k wk (18)

For non-separable classification problems slack-variables ξk,li for all data points
i = 1, . . . ,m, and or all classes l = 1, . . . , L with l 	= k are introduced into the
separation constraints. This leads to pairwise soft-constraints:

(wT
k Φ(xi) + w0k)− (wT

l Φ(xi) + w0l) ≥ 1− ξk,li (19)
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for all data points xi from class ki, and for all classes j 	= ki. These slack-variables
ξki,l
i are then introduced into the cost function:

ϕ(w1, . . . ,wL) =
1

2

L∑
k=1

wT
k wk + C

L∑
k=1

L∑
l=1,l �=k

∑
xi∈Ck

ξk,li (20)

this leads to a primal from, which is then the starting point for further develop-
ments, e.g. derivation of the dural form. We stop at this point and will provide
more details for the multi-class SVM in in the fuzzy multi-class setting.

2.4 Fuzzy Multi-class SVM

In the next step we consider the multi-class classification problem with fuzzified
class labels, here it is assumed that a training data set is given

S =
{
(xi,yi) | xi ∈ Rd, yi ∈ ΔL, i = 1, . . . ,m

}
where ΔL = {y ∈ [0, 1]L |

∑L
j=1 y

j = 1} and L is the number of classes. Fol-
lowing the idea of the two-class fuzzy SVM [8,12] we incorporate the fuzzy class
memberships into the cost function in the following form.

For any data point xi the values of membership vector yi are considered,
we assume that they are given in descending order yk1

i ≥ yk2

i · · · ≥ ykL

i . Fuzzy
memberships can be incorporated into the multi-class optimization procedure
by pairwise constraints in the following way: For a given data points xi and all
classes such that j 	= k(= k1) (k = k1 denotes the class with the largest class
membership for xi) the following constraints are introduced:

(wT
k Φ(xi) + w0k)− (wT

j Φ(xi) + w0j) ≥ 1− ξk,ji (21)

Overall, for each data point L−1 constraints are defined, so m(L−1) constraints
in total. The fuzzy memberships can be introduced directly into the cost function:

ϕ(w, ξ) =
1

2

L∑
k=1

wT
k wk + C

L∑
k=1

∑
xi∈Ck

L∑
l=1,l �=k

ξk,li (yki − yli) (22)

note that yki − yli ≥ 0 for all possible combinations, because k denotes the class
with the highest membership for data point xi. The primal form of the fuzzy
multi-class SVM problem is then given by

LP (w, w0, ξ, α, r) =
1

2

L∑

k=1

wT
k wk (23)

+C

L∑

k=1

∑

xi∈Ck

L∑

l=1,l �=k

ξk,l
i (yk

i − yl
i) −

L∑

k=1

∑

xi∈Ck

L∑

l=1,l �=k

ξk,l
i rk,l

i

+

L∑

k=1

∑

xi∈Ck

L∑

l=1,l �=k

α
k,l
i (1 − ξ

k,l
i − ((w

T
k Φ(xi) + w0k) − (w

T
l Φ(xi) + w0l)))
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Considering the largest class membership is just one possible approach for
the fuzzy multi-class classification scenario. Another way to to take advantage
from the class member ships is to define a constraint for each pair of classes

kp, kq with y
kp

i ≥ y
kq

i . But this yields L(L − 1)/2 constraints per data point,
so overall mL(L− 1)/2 constraints. Differentiating with respect to wT

k and w0k

gives the same constraints for the crisp multi-class classification case.
Differentiating with respect to wT

k gives

wT
k =

L∑
l=1,l �=k

=:ul
k︷ ︸︸ ︷( ∑

xi∈Ck

αk,l
i Φ(xi)

)
︸ ︷︷ ︸

=:uk

−
L∑

l=1,l �=k

=:vk
l︷ ︸︸ ︷( ∑

xi∈Cl

αl,k
i Φ(xi)

)
︸ ︷︷ ︸

=:vk

k = 1, . . . , L.

(24)
Differentiating with respect to w0k leads to

0 =

L∑
l=1,l �=k

∑
xi∈Ck

αk,l
i −

L∑
l=1,l �=k

∑
xi∈Cl

αl,k
i k = 1, . . . , L. (25)

Differentiation with respect to ξk,li gives the conditions

C(yki − yli)− αk,l
i − rli = 0 fori = 1, . . . ,mwithl = 1, . . . , Landl 	= k. (26)

or as re-formulated as conditions to the αk,l
i

C(yki − yli) ≤ αk,l
i ≤ 0 fori = 1, . . . ,mwithl = 1, . . . , Landl 	= k. (27)

Now, substitution all these conditions and using shortcuts uk, v
k for k =

1, . . . , L and ul
k, v

k
l for k = 1, . . . , L and l = 1, . . . , L l 	= k and uk

l = vkl yields
to the corresponding dual from.

LD(α) =
L∑

k=1

L∑
l=1,l �=k

∑
xi∈Ck

αk,l
i

−1

2

L∑
k=1

(
(uk)

Tuk + (vk)T vk
)
−

L∑
k=1

(vk)uk (28)

here dot products given through the following equations.

(uk)
Tuk =

L∑
l=1,l �=k

L∑
l̃=1,l̃ �=k

∑
xi∈Ck

∑
xj∈Ck

αk,l
i αk,l̃

j (Φ(xi))
T
Φ(xj) (29)

(vk)T vk =
L∑

l=1,l �=k

L∑
l̃=1,l̃ �=k

∑
xi∈Cl

∑
xj∈Cl̃

αl,k
i αl̃,k

j (Φ(xi))
T Φ(xj) (30)
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(vk)Tuk =

L∑
l=1,l �=k

L∑
l̃=1,l̃ �=k

∑
xi∈Cl

∑
xj∈Ck

αl,k
i αk,l̃

j (Φ(xi))
T
Φ(xj) (31)

The dual form (28) has to be maximized with respect to the constraints (25)
and (27).

3 Numerical Evaluation on Benchmark Data Sets

3.1 Data Sets

In this section the numerical evaluation of the proposed fuzzy SVM approach
is presented on a realistic benchmark data set consisting of 20,000 hand-written
digits (2,000 instances for each class). These digits, normalized in height and
width, are represented through a 16 × 16 matrix G where the entries Gij ∈
{0, . . . , 255} are values taken from an 8 bit gray scale, see Figure 1. Previously,
this data set has been used for the evaluation of machine learning techniques in
the Statlog project and many other studies (see for instance [11]).

Fig. 1. Data set of hand-written digits. Each instance given through a 16 × 16 gray
scale image (8-bit resolution).

In order to control the degree of fuzziness in the numerical experiments two
different types of data sets have been prepared. For this, we define the ball of
radius r in R

d in l1-norm by B1
d(r) := {x ∈ R

d | ‖x‖1 :=
∑d

i=1 |xi| ≤ r}.
Data set A has been sampled according to the uniform distribution of set

B1
2(2) and fuzzy labels for the data points are assigned in the following way:

Given an instance x = (x1, x2) ∈ B1
2(2) then its corresponding fuzzy class label

l is set to the following two-dimensional vector, representing the memberships
of the two classes:

l :=

(
ed(x1+x2)

1 + ed(x1+x2)
,

1

1 + ed(x1+x2)

)
.

The parameter d ≥ 0 is used to control the degree of overlap between the data
of the two classes: For small values of parameter d the classes are overlapping,
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and for increasing d-values the data of the two classes becomes more more and
more separated, thus d is reflecting the distance between the data of the class
distributions. This data set is used to demonstrate how the fuzzy SVM works in
case of weak class memberships.
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Fig. 2. Results for the artificially generated data set A, shown are differences between
classification accuracy of crisp and fuzzy SVM for different values of distances d (see
text). A box plot shows the difference of classification accuracy between fuzzy SVM
and standard SVM; positive difference means that fuzzy SVM performs better than
standard SVM. For medium class overlap fuzzy labels are beneficial; for well separated
classes (d = 2.5) and for highly overlapping classes (d = 0) the SVM can not benefit
from the fuzzy labels.

Data set B is a four-class data set, and has been generated by four bi-variate
Gaussian distributions of spherical shape (σ2 = 1 in both directions), where each
distribution is located in one of the four corners of B1

2(2). The fuzzy labels are
generated by data clustering and fuzzification of the prototypes. The data set
is used to show how data set reduction by vector quantization and prototype
fuzzification can be applied in classification tasks of big data sets by utilizing
fuzzy SVM.

Learning classifiers in a big data application is a time consuming task, and
thus, instance selection or vector quantization might help to reduce the overall
complexity. Clustering or vector quantization are common approaches to com-
pute a small set of representative prototypes out of a larger data set. We ap-
plied fuzzy c-means clustering algorithm to compute representative prototypes,
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followed by Keller fuzzification [7] of the prototypes, then, the result of the proce-
dure is a small set of prototypes, where each prototype has a fuzzy label derived
from the crisp labels weighted by the cluster membership of the data points.

3.2 Numerical Results

First we present results for the artificial data set A. In Figure 2 classification
results for standard SVM and fuzzy SVM are presented for different settings
of the distance parameter d. A box plot shows the difference of the accuracy
between fuzzy SVM and standard SVM, so positive values stand for the situation
where the fuzzy SVM shows higher classification accuracy.

For very small d-values (d = 0) the data is hard to classify, both classifiers
show the same, but very low accuracy. For small distance values d (x-axis) the
data is highly meshed and classification by using fuzzy labels and fuzzy SVM
provides far better accuracy then crisp labels with standard SVM. All in all the
fuzzy classifier works far better when the label of the data is weak and hard
classifiers work better in the case of strong signals.

Result of data set B are given in Figure 3. Here the superior classification
performance of fuzzy SVM in comparison to standard SVM using crisp labels
is shown in settings where the data set is reduced to very few prototypes. The
results were obtained by calculating fuzzy C-means and Keller fuzzification on
the dataset to obtain fuzzy labels and after that the samples were reduced to a
fraction of the normal size.
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Fig. 3. Results for the artificially generated data set B, shown are differences between
classification accuracy of crisp and fuzzy SVM for different numbers of prototypes
p = 10, . . . , 250. A box plot shows the difference of classification accuracy between
fuzzy SVM and standard SVM; positive difference means that fuzzy SVM performs
better than standard SVM. Fuzzy SVM using fuzzy labels is beneficial for a wide range
of degree of data reduction.

Similar behavior of the classification performance can be observed in the digit
dataset (see Figure 4 for the results). It shows the same behavior as dataset B
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Number of Datapoints
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Fig. 4. Results for the digit data set, shown are differences between classification accu-
racy of crisp and fuzzy SVM for different numbers of prototypes p = 10, . . . , 250. A box
plot shows the difference of classification accuracy between fuzzy SVM and standard
SVM; positive difference means that fuzzy SVM performs better than standard SVM.
Fuzzy SVM using fuzzy labels is beneficial for a wide range of degree of data reduction.

in which for very few data samples the fuzzy approach has better generalization
compared to the crisp one. As described above the dataset contains 256 features,
corresponding to a grayscale image of a digit. The results were obtained by
fuzzification of the labels with the fuzzy-c-means method and for labels which
switched class we calculated the Keller algorithm. The digit data set is a real
milt-class classification benchmark where a sub set of data points are difficult to
classify, e.g. for instance data from the classes 0, 3, 8 or 9.

4 Conclusion

We proposed a new SVM approach dealing with fuzzy or soft labels in multi-
class classification applications. In contrast to other multi-class approaches we
introduced a new technique where the fuzzy memberships of all classes are in-
corporated in an overall cost function. To gain results between the crisp and the
fuzzy SVM we considered three datasets, in which two are artificial datasets. As
shown above in dataset one the fuzzy approach has a better accuracy than the
crisp one for some places were the signal level is weak. This could be helpful
in cases where the crisp SVM has problems figuring out the seperation between
classes. Furthermore the fuzzy SVM classifier has advantages over the crisp SVM
in applications with very few samples as shown in the results for dataset 2 and
3. In these cases a good fuzzification approach can lead to better accuracy be-
cause each data point is optimized for each class present. This could also be
useful for high dimension low sample size data, if the labels are fuzzified in a
suitable way. This could happen either by applying the fuzzy-c-means algorithm
or by obtaining the fuzzy labels by hand. In our benchmark data sets we could
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show that by using the fuzzy SVM one can benefit from fuzzy or soft labeled
data in scenarios where the recognition accuracies are in intermediate range, this
is a promising property for many machine learning applications, such as semi-
supervised classification [3], multiple classifier systems, or in general information
fusion systems [14].
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